PI74ALVCHR162245 # 3.3V 16-Bit Bidirectional Transceiver with 3-State Output ## **Product Features** - PI74ALVCHR162245 is designed for low voltage operation - Vcc = 2.3Vto 3.6V - · Hysteresis on all inputs - Typical VOLP (Output Ground Bounce) < 0.8V at V_{CC} = 3.3V, TA = 25°C - Typical VOHV (Output VOH Undershoot) < 2.0V at V_{CC} = 3.3V, TA = 25°C - All output ports have equivilent 26Ω series resistors: No external resistors are required - Bus Hold retains last active bus state during 3-state eliminating the need for external pull-up resistors - Industrial operation at -40°C to +85°C - Packages available: -48-pin 240-mil wide plastic TSSOP(A) ## **Product Description** Pericom Semiconductor's PI74ALVCH series of logic circuits are produced using the Company's advanced 0.5 micron CMOS technology to achieve industry-leading speed grades. The PI74ALVCHR162245 is a 16-bit bidirectional transceiver designed for asynchronous two-way communication between data buses. The direction control input pin (xDIR) determines the direction of data flow through the bidirectional transceiver. The Direction and Output Enable controls are designed to operate this device as either two independent 8-bit transceivers or one 16-bit transceiver. The output enable (\overline{OE}) input, when HIGH, disables both A and B ports by placing them in HIGH Z condition. To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to Vcc through a pull-up resistor; the minimum value of the resistor is determined by the current sinking ability of the driver. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. # **Logic Block Diagram** ## **Product Pin Description** | Pin Name | Description | |----------|---| | xŌĒ | 3-State Output Enable Inputs (Active LOW) | | xDIR | Direction Control Input | | xAx | Side A Inputs or 3-State Inputs | | xBx | Side B Outputs or 3-State Outputs | | GND | Ground | | Vcc | Power | # $Truth\ Table^{(1)}$ | Inp | outs | - Outputs | | | | |-----|------|---------------------|--|--|--| | xOE | xDIR | Outputs | | | | | L | L | Bus B Data to Bus A | | | | | L | Н | Bus A Data to Bus B | | | | | Н | X | Z | | | | ### Note: 1. H = High Voltage Level, X = Don't Care, L = Low Voltage Level, Z = High Impedance # **Product Pin Configuration** | Product Pin Coni | igur | auon | | |------------------|------|--------|----------| | | | | | | 1DIR □ | 1 | | 48 🛘 1ŌE | | 1B0 □ | 2 | | 47 🛘 1A0 | | 1B1 □ | 3 | | 46 🗆 1A1 | | GND [| 4 | | 45 GND | | 1B2 🗆 | 5 | | 44 🛘 1A2 | | 1B3 🗆 | 6 | | 43 🛘 1A3 | | Vcc [| 7 | | 42 Vcc | | 1B4 □ | 8 | | 41 🛘 1A4 | | 1 B 5 □ | 9 | | 40 🗆 1A5 | | GND [| 10 | | 39 GND | | 1B6 □ | 11 | 48-PIN | 38 🛘 1A6 | | 1B7 🗆 | 12 | A48 | 37 🛘 1A7 | | 2B0 □ | 13 | | 36 🛘 2A0 | | 2 B 1 □ | 14 | | 35 🛘 2A1 | | GND [| 15 | | 34 🛘 GND | | 2 B 2 □ | 16 | | 33 🛘 2A2 | | 2B3 □ | 17 | | 32 🛘 2A3 | | Vcc [| 18 | | 31 D Vcc | | 2B4 □ | 19 | | 30 🛘 2A4 | | 2 B 5 □ | 20 | | 29 🛘 2A5 | | GND [| 21 | | 28 GND | | 2B6 🗆 | 22 | | 27 🛘 2A6 | | 2B7 🗆 | 23 | | 26 2A7 | | 2DIR 🗆 | 24 | | 25 2OE | | | | | | | | | | | ## **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) | Storage Temperature65°C to +150°C | |---| | Ambient Temperature with Power Applied –40°C to +85°C | | Input Voltage Range, VIN –0.5V to +4.6V | | Output Voltage Range, Vout | | DC Input Voltage0.5V to +5.0V | | DC Output Current 50 mA | | Power Dissipation1.0W | ## Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. **DC Electrical Characteristics** (Over the Operating Range, TA = -40° C to $+85^{\circ}$ C, VCC = 3.3V $\pm 10\%$) | Parameters | Description | Test Conditio | Min. | Typ. ⁽²⁾ | Max. | Units | | | | | | |---------------------|--|---|-------------------------------|----------------------------|------|-------|------|---|--|--|--| | Vcc | Supply Voltage | | 2.3 | | 3.6 | | | | | | | | V _{IH} (3) | Lucat IIICII V-16 | Vcc = 2.3V to $2.7V$ | | | 1.7 | | | | | | | | VIH | Input HIGH Voltage | $V_{CC} = 2.7V \text{ to } 3.6V$ | | | | | | | | | | | Vii (3) Input | Input I OW Voltage | Vcc = 2.3V to 2.7V | | | | | 0.7 | | | | | | V IL(e) | $V_{IL}^{(3)}$ Input LOW Voltage $V_{CC} = 2.7V$ to 3.6V | | | | | | 0.8 | | | | | | V _{IN} (3) | Input Voltage | | | | 0 | | Vcc | | | | | | Vout ⁽³⁾ | Output Voltage | | | | 0 | | Vcc | | | | | | | | $IoH = -100 \mu A, 2.3V to$ | Vcc -0.2 | | | | | | | | | | | | T. 4 A | V _{IH} = 1.7V | 2.3V | 1.9 | | | 1 | | | | | | | Iон = -4mA | $V_{IH} = 2V$ | 2.7V | 2.2 | | | 1 | | | | | Vон | Output HIGH Voltage | | Vih = 1.7V | 2.3V | 1.7 | | | V | | | | | | | Iон = -6mA | V _{IH} = 2V | 3V | 2.4 | | | | | | | | | | Iон = -8mA | V _{IH} = 2V | 2.7V | 2 | | | | | | | | | | Iон = -12mA | V _{IH} = 2V | 3V | 2 | | | | | | | | | | $IoL = 100 \mu A$, 2.3V to | I | | | | 0.2 | | | | | | | | 10L = 100μΑ, 2.3 V to | | 2.21/ | | | | | | | | | | | IoL = 4mA | VIL = 0.7V | 2.3V | | | 0.4 | | | | | | Vol | Output LOW Voltage | | $V_{IH} = 2V$ $V_{IL} = 0.7V$ | 2.7V | | | 0.4 | | | | | | VOL | Output LOW Voltage | IoL = 6mA | | 2.3V
3V | | | 0.55 | | | | | | | | Iol = 8mA | VIL = 0.8V $VIL = 0.8V$ | | | | 0.55 | | | | | | | | IOL = 8IIIA $IOL = 12mA$ | VIL = 0.8V $VIL = 0.8V$ | 2.7V
3V | | | 0.8 | | | | | | | | | VIL = 0.6 V | 3 V | | | | | | | | | I(3) | | Vcc = 2.3V | | | -6 | mA | | | | | | | Iон ⁽³⁾ | Output HIGH Current | Vcc = 2.7V | | | -8 | | | | | | | | | | Vcc = 3.0V | | | -12 | | | | | | | | | Output LOW Current | Vcc = 2.3V | | | 6 | | | | | | | | $IoL^{(3)}$ | | Vcc = 2.7V | | | 8 | | | | | | | | | | Vcc = 3.0V | | | 12 | | | | | | | | IIN | Input Current | VIN = VCC or GND, VC | | | ±5 | | | | | | | | | Input
Hold
Current | $V_{IN} = 0.7V, V_{CC} = 2.3$ | 45 | | | μΑ | | | | | | | | | $V_{IN} = 1.7V, V_{CC} = 2.3$ | -45 | | | | | | | | | | In (hold) | | $V_{IN} = 0.8V, V_{CC} = 3.0$ | 75 | | | | | | | | | | | | $V_{IN} = 2.0V, V_{CC} = 3.0$ | -75 | | | | | | | | | | | | V _{IN} = 0 to 3.6V, V _{CC} = | | | ±500 | | | | | | | | Ioz | Output Current
(3-State Outputs) | Vout = VCC or GND,
Vcc = 3.6V | | | ±10 | | | | | | | | Icc | Supply Current | $V_{CC} = 3.6V$, $I_{OUT} = 0\mu$
$V_{IN} = GND$ or V_{CC} | | | 40 | - | | | | | | | ΔΙcc | Supply Current per Input @ TTL HIGH | Vcc = 3.0V to 3.6V
One Input at Vcc - 0.6V
Other Inputs at Vcc or 0 | | | 750 | | | | | | | | Cı | Control Inputs | VIN = VCC or GND, Vo | | 4 | | | | | | | | | Сю | A or B Ports | Vo = Vcc or GND, Vc | | 9 | | pF | | | | | | #### Notes: - 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type. - 2. Typical values are at Vcc = 3.3V, +25°C ambient and maximum loading. - 3. Unused Control Inputs must be held HIGH or LOW to prevent them from floating. # Switching Characteristics over Operating Range(1) | Parameters | From
(INPUT) | To
(OUTPUT) | $V_{\rm CC}$ = 2.5V \pm 0.2V | | $V_{\rm CC} = 2.7 V$ | | $V_{\rm CC} = 3.3 \text{V} \pm 0.3 \text{V}$ | | Units | |---------------------------|-------------------------------|----------------|--------------------------------|------|----------------------|------|--|------|-------| | Tarameters | (INTOI) | (001101) | Min.(2) | Max. | Min.(2) | Max. | Min.(2) | Max. | | | t _{PD} | A or B | | 1.0 | 4.9 | | 4.7 | 1.0 | 4.2 | | | t _{EN} | ŌĒ | B or A | 1.0 | 6.8 | | 6.7 | 1.0 | 5.6 | ns | | t _{DIS} | ŌE | | 1.0 | 6.3 | | 5.7 | 1.0 | 5.5 | | | | Description | | | | | | | | | | $\Delta t/\Delta v^{(3)}$ | Input Transition Rise or Fall | | 0 | 10 | 0 | 10 | 0 | 10 | ns/V | ### **Notes:** - 1. See test circuit and waveforms. - 2. Minimum limits are guaranteed but not tested on Propagation Delays. - 3. Recommended operating condition. # Operating Characteristics, $T_A = 25^{\circ}C$ | Parameters | | Test | $\mathbf{V}_{\mathrm{CC}} = 2.5\mathbf{V} \pm 0.2\mathbf{V}$ | $V_{\rm CC} = 3.3 \text{V} \pm 0.3 \text{V}$ | Units | | |-------------------------|------------------|---------------------------|--|--|-------|--| | | | Conditions | Тур. | Тур. | | | | Cpd Power | Outputs Enabled | CL = 50pF,
f = 10 MHz | 24 | 32 | "E | | | Dissipation Capacitance | Outputs Disabled | | 4 | 5 | pF | | 3545 N. 1st Street • San Jose, CA 95134 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com